DS n°8: Fractions rationnelles, Analyse asymptotique, EV

Durée : 4 heures. Calculatrices non autorisées. Toute affirmation non triviale doit être justifiée.

Exercice 1 : Polynômes et fractions rationnelles

- 1) Décomposer en éléments simples $\frac{X^3}{X^3 + 3X^2 4}$ dans \mathbb{C} .
- 2) Décomposer en éléments simples $\frac{2}{X^4-1}$ dans \mathbb{R} .
- 3) On cherche à factoriser le polynôme $X^4 + X^2 + 1$ dans $\mathbb{R}[X]$.
 - a) Résoudre l'équation $z^2 + z + 1 = 0$ d'inconnue $z \in \mathbb{C}$.
 - b) En déduire une factorisation de $X^4 + X^2 + 1$ dans $\mathbb{C}[X]$.
 - c) Conclure.

Exercice 2 : Espaces vectoriels (et un peu de DL)

On rappelle que $C^{\infty}(\mathbb{R})$ désigne l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe C^{∞} .

1) Montrer que $C^{\infty}(\mathbb{R})$ est un \mathbb{R} -espace vectoriel.

Dans ce qui suit, on note $p,q,r\in C^{\infty}(\mathbb{R})$ trois fonctions définies par

$$p(x) = e^x$$
 $q(x) = e^{2x}$ $r(x) = e^{x^2}$

et on note $\mathcal{F}=(p,q,r)$, ainsi que $E=\mathrm{Vect}(p,q,r)$ le sous-espace vectoriel de $C^{\infty}(\mathbb{R})$ engendré par p,q,r.

- 2) On propose de montrer que \mathcal{F} est libre de trois façons. Soit donc a,b,c des réels tels que ap+bq+cr=0.
 - a) L'étudiante Eva a prouvé que \mathcal{F} est libre en évaluant (ap + bq + cr)(x) = 0 en plusieurs points x. Écrire une preuve à partir de cette idée.
 - b) L'étudiant Dave a utilisé un développement limité à l'ordre 2 au voisinage de 0 de la fonction ap + bq + cr. Écrire une preuve à partir de cette idée.
 - c) L'étudiant Liam a utilisé le comportement des fonctions p, q et r en $+\infty$. Écrire une preuve à partir de cette idée.
- 3) Est-ce que la famille (ch, sh, p) est libre ? Justifier.

On pose

$$f: x \mapsto \mathrm{ch}^2 x$$
 $g: x \mapsto \mathrm{sh}^2 x$ $h: x \mapsto \mathrm{ch}(2x)$

1

On considère la famille $\mathcal{B} = (f, g, h)$, ainsi que F = Vect(f, g, h).

- 4) Est-ce que la famille (f, g, h) est libre? Justifier.
- 5) Donner une base de F.
- **6)** Soit $n \in \mathbb{N}$. Écrire les développements limités à l'ordre n en 0 de f, g, h.

Exercice 3: DL

1) Déterminer le $DL_3(0)$ de $\sqrt{1+\sqrt{1+x^2}}$.

2) Déterminer le $DL_3\left(\frac{\pi}{4}\right)$ de $\tan x$.

Problème : Étude de fonction et accélération de convergence

On considère la fonction $f: x \mapsto (1+x)^{\frac{1}{x}}$.

1) Donner le domaine de définition de f.

2) Montrer que

$$f(x) \underset{x\to 0}{=} e - e\frac{x}{2} + e\frac{11}{24}x^2 + o(x^2)$$

3) En déduire la limite de la fonction f en 0. Dans la suite, on considère avoir prolongé f par cette valeur en 0.

4) Montrer que f (ainsi prolongée) est dérivable en 0 et donner f'(0).

5) Expliciter l'équation de la tangente à f en 0, ainsi que la position relative de la courbe représentative de f par rapport à cette tangente.

 $\mathbf{6}$) Est-ce que f admet un extremum local en 0? Si oui, préciser si c'est un minimum ou un maximum.

7) Déterminer un équivalent de f(x) - e lorsque x tend vers 0.

On définit, pour $n \in \mathbb{N}^*$, la suite $u_n = \left(1 + \frac{1}{n}\right)^n$.

8) En utilisant les questions précédentes, montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers e et donner un équivalent de la suite $(u_n-e)_{n\in\mathbb{N}}$.

2

On pose, pour $n \in \mathbb{N}^*$, la suite $v_n = 2u_{2n} - u_n$.

9) Donner un équivalent de la suite $(v_n - e)_{n \in \mathbb{N}}$. Quel est l'intérêt de cette suite ?